MOTION OF A BUBBLE IN A VISCOUS LIQUID

A. M. Golovin and M. F. Ivanov

The discussion concerns steady-state flow of a viscous fluid around a spherical bubble at
small Reynolds number R. Asymptotic matching [1] provides a way of calculating the re-
sistance force, which agrees well with the measured force for R < 5. The rate of growth
or dissolution of the bubble is calculated on the assumption that the Péclet number is large.

It follows from a survey [2] of the rise rates of single bubbles in liquids that the viscous resistance
for R « 1 (R is Reynolds number) coincides with the Stokes force for a hard sphere of the same radius.
Levich [3] considers that the cause of this is the adsorption of surfactants, which produce an immobile film
at the surface. The Stokes force is replaced by the Adamar-Rybchinski one {3] for a spherical bubble with
a free surface as R increases, and experiment [2] shows that the transition point is dependent on the prop-
erties of the liquid over a fairly wide range in R (about 1074 to 20).

It is assumed here that there is flow around a spherical bubble with a free surface for R « 1, with
the equation [1]
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Here r is the distance from the center of the bubble as divided by the bubble radius a; ¢ is the polar
angle (reckoned from the direction of u, the velocity vector for the incident flow); and v is the kinematic
viscosity,

The boundary conditions state that vy (radial component of the velocity) becomes zero at the surface

of the bubble, as do o g (the components of the stress tensor). Also, the incident flow is uniform, and so
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We seek a solution in the form

Y =P+ RY; + R, ... (R<L1)

Then it follows from (1) and (2) that

Yo = Y5r (r — 1) sin2 0 ®3)
D4y = — 3r2 (1 — r 1) sin® 0 cos 0 (4)
A particular solution to (4) is
P = —[Yer (r — 1) + agr® + agr® + a, + a_zr‘z‘] sin? 8 cos @
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The principle of minimal singularity [1] implies ¢; = a; = 0; in fact, it is impossible to link this solu-
tion to the exterior expansion of the current function if we retain these terms.

Then the following is the general solution to (4) that satisfies the boundary conditions at r =1 and
r— « while increasing not more rapidly than as r?:

Py = (A — Ygcos0) r (r — 1) sin? 0 (5)
Here A is a constant to be determined from the linking to the exterior expansion.

Further, we get

D%, = Py (r)Q1 (8) + Py (r)Q2(8) + Py (NQs (8). {6)
Q1(0) = sin®6, Qu(8) =sin®Beos®
(Qs (6} = (5 cos?8 — 1} sin? 6, Pi(r)y =31l — %r‘l)) .

The Q4 are eigenfunctions of the operator D?.

We seek a solution to (6) as

$s = f1 (D01 ) + f2 (NQ2 (8) + f5 (105 (®)
We restrict our definition of f,(r) to

L) =ag® + ar® + ayr + byt In v (M
Substitution of (7) into (6) gives the coefficients, with b, = 1/,.

We see from (5) and (7) that the corrections to the current function do not satisfy the boundary condi-
tion at infinity, because [1] the ratio of the convective terms to the viscous ones is of the order of Rr for
r— «, Although this ratio is small for r ~ 1, the convective terms in (1) cannot be considered as a small
correction to the Stokes equation for r large.

The Oseen equations take some account of the convective terms and correctly describe the velocity
distribution at large distances [1]:
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The following is a solution to (8) that satisfies the conditions at infinity and the principle of minimum
singularity at the origin:

Y= 2—‘;;‘2—sin2 8 — —%— (1 cos ) {1 — exp [— —%-(1 - €0S 9)]} (9)

Here B is a constant to be determined by asymptotic linking. The following is (9) rewritten in terms
of interior variables:

Y= '—;sinﬂel.‘_ %(1 +-cos ) {1 ——-exp[——}; {4 cosG)J}

and for R small becomes
¥ =1/, 1% sin? 6 — Y, Brsin® 9

which should coincide with the one-term interior expansion of (3), so B = 1,

The two~term interior expansion of (3) and (5) is put as follows in terms of interior variables:

YW="(/R)(p/R—1)(1+ AR — '/, R cos B) sin® 0
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and for R small becomes
Y=Y, (p/R?*1—R/p+ AR — */,R cos 0) sin® 6

which should coincide with (9) as written up to terms of the order of R inclusive:

¥ = 1/, 2 sin?0 — Y/,r sin® O + Y/gr*R (1 — cos 6) .sin* 6

This means that A = Y.
Then the following is the current function near the bubble surface up to terms of the order of R:
P =1y (r—1)1+Y, R — cos 0)]sin? 0 (10)
If ¥, (the next correction to the current function) is written in terms of exterior variables, the other
terms will include a higher-order term:

p?ln R

Yo = — 57 sin?0 (11)

If we seek a solution far from the sphere as a power series in R, with the Oseen solution as the
zeroth approximation, the next approximation will not contain terms that link up with the function of (11)
[4], so we have to eliminate this term by adding to the interior expansion a term of the form

Y=+ By +Y)oR2In Rr(r— 1) sin? 0 + ...
The current function near the bubble is then as follows up to terms of the order of RZ1nR:
Y=Ypr(r—1MN-+Y, R — cos8) -+ Y, R?In Rl sin? 6
We get the following as the force on a bubble moving steadily in a liquid:
F = 4npau (1 + Y/,R + Y/1,R%* In R) (12)
Here u = p'v is the dynamic viscosity of the liquid.

If we use only the first two terms in (12), the following is the R dependence of the resistance coeffi-

cient cp:

om =kl

D nip’a®u?

This agrees well with experiment [2] up to R = 5, as Fig. 1 shows, where curve 1 is the Stokes solu-
tion for a solid sphere, 2 is the Stokes solution with the Oseen correction, 3 is the Adamar-Rybchinski
solution for a sphere with a free surface, and 4 is the result from (13). The experimental curves are rep-

resented by the points.

Although the Stokes formula also agrees with experiment for 1.5 < R < 5, formula (13) agrees with
experiment throughout the region R < 5, so we may assume that flow around a bubble may be considered
as flow around a sphere with a free surface rather than as flow around a

solid sphere. The difference between the two flow conditions is unim-
portant in determining the rate of rise for 1.5 < R < 5 but is important

7 i
PN ,  in calculating the rate of growth or shinkage by diffusion,
) ; In the Stokes condition, when ua > D (v > D), the diffusion flux to
N the surface of a solid sphere is [3]
N
” SR = I = 7.98 (uD%a%"s (coo — €4) (14)
J
i A Here C,, is the gas concentration far from the bubble, while ¢, is
ST the concentration at the surface.
‘" y L i 57 A similar calculation via (10) gives the following result for flow
Fig. 1 around a sphere with a free surface:
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I =579 (uDa%* (1 + Y,R)" (coo — c) (15)

This becomes Levich's formula [3] for R— 0. The correction to the first term in the R expansion
is about 50% for R=5,

We can substitute the rate of steady-state rise of a bubble into (15):

1 ga® 1
U= TINE 16)

Here g is the acceleration due fo gravity.

Then the total flux to the surface of the bubble is

I = 3.3 (Da-”g / ’V)l/’ (Coo - ca) (17)

The factor dependent on R in (17) cancels out also when we incorporate the next term in the expansion
of the current function as a series in R,

Equation (17) also describes the rate of growth or shrinkage of a spherical bubble by diffusion for
vR > 1 in the absence of surfactants [3], so it is suitable for the entire range where there is no flow de-
tachment .,

We are indebted to V. G. Levich for a discussion.
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